Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 12(1): 3189, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1246368

ABSTRACT

In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , Cytokines/blood , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/virology , Disease Progression , Female , Hospitalization , Humans , Immunization, Passive , Immunoglobulin G/blood , Kaplan-Meier Estimate , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , COVID-19 Serotherapy
2.
Eur J Clin Microbiol Infect Dis ; 40(10): 2207-2209, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1130808

ABSTRACT

Mortality from COVID-19 has been particularly high in elderly patients on mechanical ventilation. Treatment outcomes for patients with do-not-intubate (DNI) status are unknown. One hundred patients admitted to the non-ICU ward during the "first wave" were retrospectively analyzed. Mortality rate was 49% in patients with a DNI order. This subgroup was characterized by significantly higher age, more comorbidity, and care dependency. Mortality among DNI patients was three times higher than other patients, but not higher than some of the published mortality rates for elderly mechanically ventilated patients. Advanced care planning is essential in COVID-19 to assist patient autonomy and prevent non-beneficial medical interventions.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Intensive Care Units/statistics & numerical data , Adult , Aged , Aged, 80 and over , Hospital Mortality , Humans , Intubation , Male , Middle Aged , Netherlands , Retrospective Studies , Young Adult
3.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: covidwho-1125556

ABSTRACT

The aim of this study was to describe the frequency of positive Aspergillus tests in COVID-19 patients and investigate the association between COVID-19 and a positive Aspergillus test result. We compared the proportion of positive Aspergillus tests in COVID-19 patients admitted to the intensive care unit (ICU) for >24 h with two control groups: patients with community-acquired pneumonia with (i) a PCR-confirmed influenza infection (considered a positive control since the link between influenza and invasive aspergillosis has been established) and (ii) Streptococcus pneumoniae pneumonia (in whom positive Aspergillus tests are mostly considered as colonization). During the study period, 92 COVID-19 patients (mean [standard deviation] age, 62 [14] years; 76.1% males), 48 influenza patients (55 [14]; 56.2% males), and 65 pneumococcal pneumonia patients (58 [15], 63,1% males) were identified. Any positive Aspergillus test from any respiratory sample was found in 10.9% of the COVID-19 patients, 6.2% of the patients with pneumococcal pneumonia, and 22.9% of those infected with influenza. A positive culture or PCR or galactomannan test on bronchoalveolar lavage (BAL) fluid only was found in 5.4% of COVID-19 patients, which was lower than in patients with influenza (18.8%) and comparable to that in the pneumococcal pneumonia group (4.6%). Using logistic regression analysis, the odds ratio (OR) (95% confidence interval) for a positive Aspergillus test on BAL fluid for COVID-19 patients was 1.2 (0.3 to 5.1; P = 0.8) compared to the pneumococcal pneumonia group, while it was 0.2 (0.1 to 0.8; P = 0.02) compared to the influenza group. This difference remained significant when corrected for age and sex. In conclusion, in COVID-19 patients, the prevalence of a positive Aspergillus test was comparable to that in patients admitted for pneumococcal pneumonia but substantially lower than what we observed in patients with influenza.


Subject(s)
COVID-19/complications , Intensive Care Units , Invasive Pulmonary Aspergillosis , Aged , Aspergillus , Bronchoalveolar Lavage Fluid , Female , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/epidemiology , Male , Mannans , Middle Aged
4.
Eur J Clin Invest ; 50(7): e13259, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1084256

ABSTRACT

BACKGROUND: The clinical features of COVID-19 pneumonia range from a mild illness to patients with a very severe illness with acute hypoxemic respiratory failure requiring ventilation and Intensive Care Unit admission. AIMS: To provide a brief overview of the existing evidence for such differences in host response and outcome, and generate hypotheses for divergent patterns and avenues for future research, by highlighting similarities and differences in histopathological appearance between COVID-19 and influenza as well as previous coronavirus outbreaks, and by discussing predisposition through genetics and underlying disease. MATERIALS AND METHOD: We assessed the available early literature for histopathological patterns of COVID-19 pneumonia and underlying risk factors. RESULT: The histopathological spectrum of COVID-19 pneumonia includes variable patterns of epithelial damage, vascular complications, fibrosis and inflammation. Risk factors for a fatal disease include older age, respiratory disease, diabetes mellitus, obesity and hypertension. DISCUSSION: While some risk factors and their potential role in COVID-19 pneumonia are increasingly recognized, little is known about the mechanisms behind episodes of sudden deterioration or the infrequent idiosyncratic clinical demise in otherwise healthy and young subjects. CONCLUSION: The answer to many of the remaining questions regarding COVID-19 pneumonia pathogenesis may in time be provided by genotyping as well careful clinical, serological, radiological and histopathological phenotyping.


Subject(s)
Coronavirus Infections/pathology , Edema/pathology , Inflammation/pathology , Pneumonia, Viral/pathology , Respiratory Mucosa/pathology , Thrombosis/pathology , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Diabetes Mellitus/epidemiology , Fibrosis , Genetic Predisposition to Disease , HLA Antigens/genetics , Humans , Hypertension/epidemiology , Inflammation/immunology , Influenza, Human/pathology , Obesity/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Polymorphism, Genetic , Respiratory Mucosa/immunology , Respiratory System/pathology , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/genetics , Severe Acute Respiratory Syndrome/pathology
5.
Nat Commun ; 12(1): 267, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1019818

ABSTRACT

Key questions in COVID-19 are the duration and determinants of infectious virus shedding. Here, we report that infectious virus shedding is detected by virus cultures in 23 of the 129 patients (17.8%) hospitalized with COVID-19. The median duration of shedding infectious virus is 8 days post onset of symptoms (IQR 5-11) and drops below 5% after 15.2 days post onset of symptoms (95% confidence interval (CI) 13.4-17.2). Multivariate analyses identify viral loads above 7 log10 RNA copies/mL (odds ratio [OR] of 14.7 (CI 3.57-58.1; p < 0.001) as independently associated with isolation of infectious SARS-CoV-2 from the respiratory tract. A serum neutralizing antibody titre of at least 1:20 (OR of 0.01 (CI 0.003-0.08; p < 0.001) is independently associated with non-infectious SARS-CoV-2. We conclude that quantitative viral RNA load assays and serological assays could be used in test-based strategies to discontinue or de-escalate infection prevention and control precautions.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2 , Virus Shedding , Aged , COVID-19 Testing , Female , Humans , Male , Middle Aged , Multivariate Analysis , Odds Ratio , RNA, Viral , Respiratory System/virology , Viral Load
6.
Clin Microbiol Infect ; 27(1): 61-66, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-808838

ABSTRACT

SCOPE: The Dutch Working Party on Antibiotic Policy constituted a multidisciplinary expert committee to provide evidence-based recommendation for the use of antibacterial therapy in hospitalized adults with a respiratory infection and suspected or proven 2019 Coronavirus disease (COVID-19). METHODS: We performed a literature search to answer four key questions. The committee graded the evidence and developed recommendations by using Grading of Recommendations Assessment, Development, and Evaluation methodology. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS: We assessed evidence on the risk of bacterial infections in hospitalized COVID-19 patients, the associated bacterial pathogens, how to diagnose bacterial infections and how to treat bacterial infections. Bacterial co-infection upon admission was reported in 3.5% of COVID-19 patients, while bacterial secondary infections during hospitalization occurred up to 15%. No or very low quality evidence was found to answer the other key clinical questions. Although the evidence base on bacterial infections in COVID-19 is currently limited, available evidence supports restrictive antibiotic use from an antibiotic stewardship perspective, especially upon admission. To support restrictive antibiotic use, maximum efforts should be undertaken to obtain sputum and blood culture samples as well as pneumococcal urinary antigen testing. We suggest to stop antibiotics in patients who started antibiotic treatment upon admission when representative cultures as well as urinary antigen tests show no signs of involvement of bacterial pathogens after 48 hours. For patients with secondary bacterial respiratory infection we recommend to follow other guideline recommendations on antibacterial treatment for patients with hospital-acquired and ventilator-associated pneumonia. An antibiotic treatment duration of five days in patients with COVID-19 and suspected bacterial respiratory infection is recommended upon improvement of signs, symptoms and inflammatory markers. Larger, prospective studies about the epidemiology of bacterial infections in COVID-19 are urgently needed to confirm our conclusions and ultimately prevent unnecessary antibiotic use during the COVID-19 pandemic.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , COVID-19 Drug Treatment , Opportunistic Infections/drug therapy , Pneumonia, Bacterial/drug therapy , SARS-CoV-2/pathogenicity , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacterial Typing Techniques , Bias , Blood Culture/methods , COVID-19/microbiology , COVID-19/virology , Coinfection , Evidence-Based Medicine , Humans , Opportunistic Infections/diagnosis , Opportunistic Infections/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Sputum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL